VERNACULAR ARCHITECTURE: Advocating Volcanic Stone Construction as a Viable Alternative to Fired Brick in Mountainous Areas of Southwestern Uganda.

Keywords: Vernacular, Stone Construction, Sustainable development

The following discussion presents volcanic stone as a viable walling material in areas where it is abundant.  Kisoro, Fort Portal and Bushenyi located in Southwestern Uganda are areas endowed with abundant volcanic stone.  However, area residents still opt for brick walling despite the poor soils in those areas.  The poor soils produce lower quality bricks compared to the fired clay brick from other areas especially around the Victoria basin.  Natural stone possesses physical properties suited for structural walling yet in Uganda it is habitually specified for its aesthetic finish (floor surfacing and wall cladding).  In comparison to Compressed Earth Block (CEB) and Compressed Soil Blocks (CSB), stone has not been explored enough as a potential front-runner among sustainable walling alternatives.  Further, little is being done to empower local communities to meet their own aspirations as industry, economics and urban development conspire to interrupt the transition to sustainable development particularly with regards to how environmentally unfriendly materials like fired brick are propagated.

The use of stone in construction is not completely alien to our context.  According to Nnamdi (1997), stone construction in Africa dates back to over 10,000 years ago.  In fact, Shadmon (1996) writes that Stone was used for construction way before man ever started using metallic tools.  Stone construction in Africa was popular in hilly parts of Africa creating what was known as the “hill style”, Nnamdi (1997).  More recently, residents in the hilly areas of Bunyaruguru and Kasese have constructed and actually live in stone buildings as shown in Figure 1.  In parts of Kabale stone construction is evident in their stone garden perimeter walls, and stone cooking fireplaces.

Figure 1: Stone Cottage in Fort Portal and abundant stone in Southwestern Uganda

Fired brick is not indigenous to Uganda’s material palette, in fact it was never used, at least not until a century ago, when the biggest Cathedrals were constructed at Namirembe and Rubaga (Moon, 1994) under stellar supervision even during material production.  Today, the local brick industry is highly unstandardized and because of this there is an inconsistent quality of bricks most of which are irregular.  Further, some bricks are made from poor quality soils (locally know as kifufu) and are significantly weaker than the paying public expects.  Irregularities in brick configuration have led to the wasteful use of mortar as the masons attempt to deliver straighter walls. Additionally, weaker bricks contribute to heaps of debris noticed on numerous construction sites – a topic deliberated upon previously on this blog (see Building and Materials:  waste less, gain more, check the ecological footprint, October, 2015).

Indeed, potentially viable materials and construction techniques in rural societies are not being explored for their economic and environmental merit.  Unfortunately, architects in practice are not helping the situation.  Most architects in the country persistently avoid rural commissions because few, if any, people there can afford their professional fees.  As a consequence, the low-skill level fundis and draftspersons that take on these rural projects generally work with a standard brick palette as taught in technical schools.

The cost of brick construction is even higher in the mountainous areas of Southwestern Uganda, even worse, where good clay soils hardly exist.  As a result, bricks are transported large distances to service these areas further increasing the economic and environmental cost of construction.  Brick transportation in the popular small to medium gasoline trucks over rough roads could consume as much as 5MJ/tonne for every kilometre (Fraser et al, 1995).  At this rate, each truck on a regular 100km trip uses the same fuel equivalent to burning 100kg of charcoal.  Transportation delivers an avoidable carbon load of up to 0.0741 KgCO2 per kilometre (Quashning, 2016).

Reducing the cost of construction is crucial for the success of vital infrastructure such as access to housing. “The cost of an average home mortgage in Uganda is about $30,000” Muhumuza (2016).  However, according to the World Bank development indicators (2016), Uganda’s Gross National Income is $670.  On a monthly basis, that is an average of $56.  This means that on average a Ugandan committing upwards of 30% of their annual income to service a mortgage, would require 144 years for one to pay off the loan.  These sums are inflated when interest is compounded.  This indicates that even a middle-class Ugandan would need to spend well over 50% of their income to afford decent housing.  Yet still, low cost housing in Uganda is considered by Ministry of Lands, Housing and Urban development, to be that which doesn’t exceed more than 30% of the homeowner’s income (Muhumuza, 2016).

There are three dormant volcanoes in Southwestern Uganda and according to Shadmon (1996), in the eruption of a volcano, as hot lava reaches the earth’s surface, it quickly cools down, forming crystals of igneous volcanic rock.  Some of these rocks include andsite, basalts, purnice, and rthyolite.  It is important to note that any one of these stones have a higher compressive strength than the popular fired brick.  Take for example basaltic rock that is most abundant in these areas, has an uniaxial compressive strength ranging between 12-63Mpa, (Schultz, 2012) – which is higher compared to the average compressive strength of fired brick that ranges between 5-10Mpa.

Interviews revealed a general perception among residents that stone construction is expensive.  Stone is even referred to as the rich man’s material. Residents report that, stone construction requires a lot more sand and cement mortar than fired brick.  Also, due to low popularity of the material, skilled masons in the area are rare and expensive. Interviews further revealed that the construction process takes a long time owing to a longer duration required to dry the huge chunks of mortar.  The delicate process of laying the uneven stone to form regular walls, also contributes to a prolonged construction process.

The residents say that before the popularity of brick in the area, vernacular architecture was constructed using mud and wattle like in other indigenous communities of Uganda. However, unlike in other areas, people in Kisoro added small volcanic stones to the mud to create firmer walls.  The walls were then finished with chalkstone dissolved in water to create a smooth surface.  Today, there are few stone buildings in the area mostly owned by the rich.  The difference being that the wealthy use sand and cement, yet the rest use mud mortar.  However, the result is not sturdy and for this reason, some residents in search for better quality buildings opt for fired brick rather then use stone with mud mortar.

One good practice example in a similar context is Butaro hospital by MASS design group architects located in Butaro, Rwanda just a few kilometers from Kisoro with similar climate, terrain and abundance in volcanic rock.  This project made use of the local volcanic rock, but also is sensitising society through the quality of the physical structure, that there is potential in this long-ignored material.  As a result, a new industry of stone dressing, marketing and construction has been able to kick off in Butaro, creating jobs that otherwise didn’t exist as Benimana (2016) explains.  Similarly, the artisans who hand-crush stones for aggregates in Southwestern Uganda can be further commissioned to shape volcanic stone to more regular blocks that can be assembled with less mortar. Further, in this same context, there is an existing trade of hand-crushed stones for construction aggregates. Stone crushers stand a chance to make additional income from stone dressing like their counter parts in neighbouring Kenya.

Progress in material production comes down to equipping communities with the necessary knowledge and skilling.  Architecture Schools need to educate built environment professionals to be more open-minded and take pride in the heritage of this country, and the readily available materials or opportunities that our context has to offer.  This can be achieved by questioning how we build and who builds if we are to transform rural communities all over the world.

References

Ahimbisibwe, A., Ndibwami, A., & Niwamara, T. (2015). Rural (Low Income): Inspiring Communities to shape to shape their future. PLEA 2015 Architecture in R(evolution) 31st International PLEA Conference. Bologna 9th – 11th September. Ass. Building Green Futures. Bologna, pp. 62.

Ahimbisibwe, A. & Ndibwami, A. (2016). Demystifying Fired Clay Brick: Comparative analysis of different materials for walls, with fired clay brick. 36th International Conference on Passive and Low Energy Architecture (PLEA). Cities, Buildings, People: Towards Regenerative Environments. Los Angeles.

Benimana, C. (2016). Architecture That Serves The Community. Design Indaba, view on 30th October 2016. Available at: https://www.//youtube.com/watch?v=033UAUihl6w [Assessed 17 March 2016]

Moon, K. (1994). St Paul’s Cathedral. Namirembe. Karen Moon: Richmond.

Fraser, J., Swaminathan, S., and Thompson, L. S. (1995). Energy Use in the Transport Sector. Work Bank Project. Available at: http://www.tgaassoc.com/documents/energy-text&figures-dec2007.pdf [Assessed 12 November 2016]

Muhumuza, M. (2016). The low-cost housing myth in Uganda, Daily Monitor, viewed on 26th October 2016. Available at: http://www.monitor.co.ugbusiness/Prosper/The-low-costhousing-myth-in-Uganda.”688616-3370372-b5x62qz/index.html> [Assessed 10 February 2017]

Nnamdi, E. (1997). African Architecture: Evolution and Transformation. McGraw-Hall, United States of America.

Odongo, J. & Lea, J. (1977). Home Ownership and Rural-Urban Links in Uganda. The Journal of Modern African Studies, Vol. 15, No. 1 (Mar., 1977), pp. 59-73, Cambridge University Press.

Olweny, M. (2006). Technology and Architecture Education in Uganda, The Architecture Science Association

Olweny, M. (2007). Politics, Religion, and Architecture in Uganda, in Loo, s. and Bartsch, K. (eds) Panorama to Paradise, Proceedings of the XXIVth International Conference of the Society of Architectural Historians, Australia ‘and New Zealand, Adelaide, Austria 21-2a September.

Ochola, D. (2016). The return of the stone craftsman to Kenyan Architecture, David Ochola Architect. Available at http://davidchola.com/architecture/green-architecture/the-return-of-the-stone-craftsman-to-kenyan-architecture/ [Assessed 02 April 2017]

Quashning, V. (2016). Statistics: Specific Carbon Dioxide Emissions of Various Fuels. Erneuerbare-Energien-und-Klimaschutz.de. Available at: http://www.volker-quaschning.de/datserv/CO2-spez/index_e.php [Assessed 13 March 2017]

Shadmon, A. (1996). Stone: An Introduction. London. Intermediate Technology Publication Ltd.

Schultz, R. (2012). “Brittle strength of basaltic rock masses with applications to Venus.”, 21 September, 2012, Journal of Geological Research.

SSA: UHSNET. (2015). Challenges of Low Income Earners on accessing building materials.  Shelter and Settlement Alternatives: Uganda Human Settlement Network.  Available at http://www.ssauganda.org/index.php?option=com_content&view=article&id=116:building-materials-uganda&catid=83&Itemid=296. [Assessed 7 October 2015]

Advertisements

DOWN TO EARTH EDUCATION: Incorporating Earth Construction in East African curricula.

Keywords: Earth construction, University curriculum, Changing attitudes

Earth has been an indigenous material widely used for construction in traditional societies; this rich heritage is still visible in Morocco, Egypt as well as in West and Sub-Saharan Africa. Today, the use of earth is regaining prominence in West Africa due to deliberate efforts like the Nka foundation (Earth Architecture, 2014). Proponents of earthen architecture in Uganda like Eng. Dr. Mose Kiiza Musaazi have demonstrated that it is simple, cheap; community centred and does not require sophisticated machinery. Further, it can prevent pollution, deforestation, and loss of biodiversity thereby presenting an environmentally friendly alternative to conventional materials. Earthen Buildings are characterized by low energy costs from cradle to grave and though they are labour-intensive, are suitable for third world economies where labour is cheap.

Such technologies are critical in developing countries like Uganda where socioeconomic growth can be enhanced by the integration of sustainable design practices, green buildings, waste and biomass valorisation and energy saving technologies; all key components of meeting the Sustainable Development Goals. Unfortunately, earthen technologies are not formally taught in Architecture schools or technical institutions around East Africa, and subsequently have not gained traction in the local construction industry. Furthermore, low literacy levels in the region leave the bulk of this awareness and its associated convictions with an informed few who seem to be confined to their institutions of higher learning.

Since in Uganda the urban formal sector supports 
a small affluent elite but the majority of the people exist in conditions of abject poverty in rural areas and in the urban informal sector, this discussion espouses the feasibility of the optimistic view that if economic production is modelled on the sustainable development approach, it is possible to eliminate poverty and improve social conditions while avoiding environmental problems (Sanya, 2007).  Therefore, suggesting social change that can stimulate economic growth, could gain more acceptance in the immediate and eventually in the long run.

It should be noted that earthen construction is becoming commonplace around the globe. Studies indicate that almost 30% of the world’s rural population even in the developed world, predominantly resides in Earth buildings (Pacheco-Torgal et al, 2012). Consequently, recently constructed earthen buildings can be found in Austria, Germany, France and most of central Europe (BASEhabitat, 2016). In addition, around 15% of the population in France resides in earth-walled houses while a significant proportion of houses in Australia’s Margaret River province are housed by unfired earth walls (Hall et al, 2004). In United States and Brazil earth construction has increased substantially over the years, largely due to the sustainable construction programmes. In Uganda, this revival has not taken hold; therefore, shanty wattle and daub structures in deplorable state are noticeable in many small towns and rural communities. Here we are not suggesting replacing the current construction efforts with earthen construction, but merely proposing earthen construction to augment access to quality architecture to promote well being on a larger scale.

Despite the global momentum in earth construction, adoption in Uganda is significantly low and according to researchers, this can be attributed to lack of awareness, training and education, principally on issues of architectural design, sustainable practices and utilisation of environmentally friendly building materials. According to Ali et al., (2010) the lack of a sustainable architectural curriculum for higher educational institutions may be responsible for inadequate integration of Earth Construction Techniques. Detached from the ferment of epochal change, the groves of academe are failing to engage with current critical realities (Buchanan, 2012).

This section of the Blog is informed by data collected for chapter 6. Influencing Architecture Education of a PhD thesis Investigating the Process of socialisation in Architecture Education Through Experience in East Africa. (Olweny, 2017).  The thesis provides much-needed context on education and Curriculum in the region.

Observations of 3rd, 4th and 5th year level form universities in Uganda, Kenya and Rwanda, despite living in poor low-tech context, do not depict the reality of their socio-economic or even technological context; students’ material proposals did not seem to consider existing evidence of the negative impacts associated with material production like deforestation, excessive soil extraction, energy intensive production, and high construction waste. Further, students did not portray any sensitivity to the doubled charcoal prices in the last five years, thinner and sparser woodlands along major highways or even to rising costs of electricity. Student design proposals generally recommended exposed glazed facades on concrete or steel structures with fired clay brick or concrete block walling. These proposals lend limited credence to any adoption or integration of sustainable practices or suggestion of practical technologies to foster more efficient use of energy and locally available resources. This negligent attitude does not engender conscious interrogation of all the available options, or even re-visiting the merits of any indigenous earthen strategies.

Further, Olweny (2006) asserts that most architecture schools in Uganda are making no efforts to involve technology as an important aspect of architecture design. This has resulted into minimal efforts by architects in practice to research or creatively adopt new ways to improve design or to interrogate vernacular materials. In addition, even the schools that incorporate technology in the student’s design process, have their efforts let down when graduates go into the field and become negatively influenced by architects with contrary education, field or construction experience. The result of this is architecture that is not primarily informed by its context. Ironically in Uganda and even more in the region, foreign architects are undertaking most contextually responsive commissions.

Rigid reference to concrete, steel, cement and fired brick disregards the responsibility of universities to train/skill innovative minds to devise contextually relevant solutions. It should be noted that competent educators in this area are hard to come by, and those who are, perhaps are either too busy in practice or would not settle for the terms on offer. It is also unfortunate to note that during mandatory field experience (Industrial placement) engagements on construction sites, students are exposed to bad construction practices. This exposure creates a negligent and haphazard attitude or approach towards the construction process.

On the whole, architecture education in Uganda does not prepare professionals to support or confidently survive within their context. Students become proficient primarily at interventions that are convenient for a minority of the developers, yet constrictive to the larger population that is struggling against poverty. Architects trained to serve a privileged few, miss the opportunity to drive a transformative engine towards more sustainable cities and communities.

The Faculty of the Built Environment at Uganda Martyrs University despite all the above challenges always attempts to improvise. One recent effort was an elective that explored the dynamics of construction and its links to the iterative process that is design and the quality assurance/control processes in testing and guaranteeing building materials. See Figure 1 below.  The focus was key walling and roofing options that fulfill specific embodied energy and functional requirements while revealing an aesthetic often lost either due to poor building technique or utter negligence that leads to material wastage. A central consideration was the ability and interest in working as part of a team in an effort to collectively hone key skills. Ultimately the goal was to interrogate the question: Can stepping out of the studio to engage construction in real life improve students’ perception, grow their aspirations and nurture key values?

Figure 1. Peer learning and collaboration during the construction of the Earth Kiosk and Pizza Oven

Brim’s (1996) classical definition of socialisation as “the process by which persons acquire the knowledge, skills and dispositions that make them more or less effective member of society”. Architecture schools should endeavour to deliver a critical blend of tacit alongside explicit knowledge. This blend engenders attitudes of responsibility for self-development, critical thinking, and professionalism. These attitudes contribute to much-needed values of self-expression, confidence as well as critical self-appraisal that make a competent Environment design professional.

This study suggests that deliberate approaches, even at a small scale, to incorporate earthen construction into university architecture curricula can increase awareness and application of locally available materials in construction. Such projects could stimulate inter-university or inter-disciplinary collaborative efforts between universities and attract funding for future research projects. Further, the study identified challenges that might help inform coordination and planning of such projects.

References

Agapiou, A. and Salama, A, M. (2016). Shaping the Future of Architecture Education in Scotland. Charrette, Volume 3, Number 1, Spring 2016, pp. 1-5(5). association of architectural educators (aae). University of Strathclyde.

Ali, D., Gumau, S.W. and M. Ajufoh, M. (2010). “Towards A More Sustainable Architectural Curriculum Of Higher Institutions In Nigeria.” Journal of Research in Education and Society. 1 (2-3).

BASEhabitat. (2016). “Earthen Architecture in Central Europe.” Travel Guide www.basehabitat.org. University of Art and Design Linz.

Bobbo, H., Ali, A. M., Garba, I., and Salisu, M. (2015). The Prospects and Challenges of incorporating Earth Construction Techniques (ECT) in the Nigerian Educational Curriculum. Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 8, August. Avaible at: http://www.jmest.org/wpcontent/uploads/JMEST N42351008.pdf [Accessed 15 February 2017]

Bouchlaghem, D. (2007). Architecture engineering and Design Management. Teaching and Learning Building Design and Construction. London: Earthscan.

Buchanan, P. (2012). “The Architectural Review. The Big Rethink Part 9: Rethinking Architectural Education.” Available at: https://www.architectural-review.com/archive/campaigns/the-big-rethink/the-big-rethink-part-9-rethinking-architectural-education/8636035.article [Accessed 18 October 2016]

Earth Architecture. (2014). “Nka Foundation Announces the Winners of the Mud House Design 2014 Competition for Ghana.” Available at: http://eartharchitecture .org /?p=645 [Accessed 18 October 2016]

Elliot, W. (2003). Innovative Pedagogy and School Facilities. DesignShare, Elliot and Washor. Available at: http://www.designshare.com/Research/Washor/P edagogy%20and%20Facilities.pdf [Accessed 15 August 2016]

Guillaud, H. (2008). Characterization of Earthen Materials. In: Avrami, E., Guillaud, H., Hardy, M., editors. “Terra literature review – An Overview of Research in Earthen Architecture Conservation.” Los Angeles (United States): The Getty Conservation Institute; p. 21–31 Available at: https://www.filepicker.io/api/file /c8QIcAjRSuOvqHzchZUv [Accessed 18 Feb 2017]

Gürel, M.Ö. (2010). Explorations in teaching sustainable design: A studio experience in interior design/architecture.” International Journal of Art & Design Education. 29(2): p. 184-199.

Hall, M. and Djerbib, Y. (2004). Rammed earth sample production: context, recommendations and consistency.” Construction and Building Materials. 18(4): p. 281-286.

Hendricson, W. D. (2006) “Educational Strategies Associated with Development of Problem-Solving, Critical Thinking, and Self-Directed Learning.” ADEA Commission on Change and Innovation in Dental Education. Available at: http://ccnmtl.columbia.ed /projects/pl3p/ADEA%20problem%20solving%20review.pdf [Accessed 12 March 2017]

Moquin, M. (1996). Ancient solutions for future sustainability: Building with adobe, rammed earth, and mud.” Earth building and cob revival: A reader, 3: p. 7-12.

Ndibwami, A. & Ahimbisibwe, A. (2016). ENDS 3501/2501 Demystifying Construction: Let’s build! Elective Course Unit at the Faculty of the Built Environment, Uganda Martyrs Unversity, Nkozi

Olweny, M. (2017). “Socialisation in architectural education: a view from East Africa”, Education + Training, Vol. 59 Issue: 2, pp.188-200, doi: 10.1108/ET-02-2016-0044. PhD, Welsh School of Architecture, Cardiff University, Wales.

Pacheco-Torgal, F and Jalali, S. (2012). Earth construction: Lessons from the past for future eco- efficient construction.” Construction and building materials. 29: p. 512-519.   Available at: https://repositorium.sdum.uminho.pt/bitstream/1822/16 367/1/JCBM2998.pdf [Accessed 24 March 2017]

Radford, T. (2011). “Learning and Teaching Academic Standards Project.” Architecture. Learning and Teaching Academic Standards Statement. Ch. 3. Nature and Extent of Architecture. Australian Learning and Teaching Council. P.8

Available at : http://disciplinestandards.pbworks.com/w/file/fetch/52867943/ altc_standards_ARCHITECTURE_240811_rv3-2.pdf [Accessed 17 March 2017]

Sanya, T. (2007). Living in Earth: The Sustainability of Earth Architecture in Uganda. PhD thesis. University of Cape Town.

Schmidt, H.G., Norman, G.R., and Boshuizen, H.P.A. (1990). “A cognitive perspective on medical expertise: theory and implications.” Acad Med 1 990;65:611-21.

Shannon, S. J. (1995). “The Studio Critique in Architectural Education” PhD, University of Adelaide. p 392 Available at: http://hdl.handle.net/2440/18641[Accessed 15 August 2016].

Temple, N. and Bandyopadhyay, S. (2007). Thinking Practice. Reflection on Architecture Research and Building Work. London: Black Dog Publishing.

A tripartite approach to dealing with embodied energy in housing

For any worthwhile discussion, explication of any phrases that might otherwise cause undesirable hesitation is key. We begin therefore by shedding light on embodied energy. This is defined as the energy consumed by all the processes associated with the production of an object. In the context of building construction, processes included within embodied energy analysis (EEA) include the mining and processing of the natural resources used to manufacture, the manufacture, transport, delivery and installation of a product. Embodied energy is an emerging key consideration in housing today primarily because of the impacts (perceived and real) that energy production has on the environment.

Today, housing is a complex issue; and how intriguing it is that it extends beyond the physical dwelling and encapsulates psychological notions, i.e. human ideals, needs, wants, aspirations, and economic ability. As such, in its pursuit of making a contribution towards reducing the embodied energy of housing, the ELITH project proposes a multi-pronged approach – aligned with the complexity of the housing as it is understood or misunderstood and later shaped. This approach includes:

  • Fronting the value in contextual material selection and application
  • Promoting the ability of community partnerships to propagate knowledge, expertise and appropriate technologies
  • Skilling a formally educated sustainability professional to impact on a largely informal sector

Appropriate material selection and use is the primary focus for reducing the embodied energy involved in construction. This is because the decision to use a specific material impacts on extraction, manufacture, transportation, and waste generation from construction. In Uganda and the world as a whole, changing living patterns and trends are leading to the replacement of vernacular architecture, which emphasises the use of local building materials and low-energy use with more modern building interventions (Alyami et al., 2013). These methods, while providing undeniable benefits such as durability to construction, it is hypothesised, may not be the most suitable for all applications. While the importance of reducing the embodied energy in housing is appreciated from mostly a scientific point of view, the same cannot be said from a layman’s perspective. As such the ELITH project explores a grassroots and participatory process through a material selection tool that supplements existing determinants for material selection such as initial (purchase) cost, availability and ease of use – determined to be common objective drivers for material selection with additional parameters that wholly encompass sustainability criteria – social, economic and environmental impacts such as: environmental impacts of extraction and manufacture, thermal and acoustic properties, toxicity and cost of maintenance, above all, paying keen attention to the sum of these criteria and how a material/process/technology still scores against embodied energy.

The project extends its knowledge and capacity function beyond the trained built environment professional in order to grow a society grounded in the process of material selection and later construction that is well informed about and understands embodied energy in the construction of housing.

Through its interaction with promoters of various innovations within the construction industry, the ELITH project has determined that a key stumbling block for the uptake of new ideas – such as the materials selection tool proposed prior, et al. is the propagation of knowledge that challenges rooted conceptions. To this end, the study queries how community partnerships can be emulated as both a development and problem-solving model.

Embodied energy and saving on energy use are a quantifiable variable that could be shared with the masses. When people know how much they stand to gain and subsequently experience the cost savings as a result of sustainable practices, the project objectives will be taken on as community initiatives with a ripple effect that can also serve to embellish the findings and quantitative reports of the study.

The crux of the matter is the conversation on embodied energy and the possible benefits of this consideration to an individual or his/her community.

During their community development project Alwan and Jones (2014) results indicated that while operational energy was more significant over the long term, the embodied energy of key materials could not be ignored, and that it was likely to be a bigger proportion of the total carbon in a low carbon building. The components with high-embodied energy were also identified. Their design team responded to this by altering the design to significantly reduce the embodied energy within these key components – and thus made the building far more sustainable in this regard.

A contextual equivalent wound be to analyse walling elements, considering they cover the most significant surface area of most buildings, then call attention to the amounts of fuel required to prepare the units that build these elements. Firewood is a quantifiable resource particularly in local communities where it serves as the primary fuel for food preparation.

The current study is also cognisant of the fact that knowledge ought to be nurtured and promoted, as such, built environment professional at the forefront of the evolution of technologies, form an important link between the community and innovations within the industry. A key concern though is how well educated and aware the built environment professional is, and how the system within which they exist encourages this, or an improvement in the state of affairs.

The issues to consider also spell out a possible approach in themselves; and may include:

  1. The prevailing ethical dilemma and whether professionals understand their liability.
  2. The concern about cost like it was just a numbers game, without stopping to consider the future value of buildings.
  3. If built environment professionals stop to consider issues of social equity or are they indeed too elitist to deal with health, safety and wellbeing leaving it for the social scientist?
  4. Overall the ethos of managing and promoting an attitude that thinks about how to avoid/manage/mitigate risk in view of the fact that someone has to take ownership of it all.

These four points give a good indication of where to place emphasis in order to promote sustainability in a largely informal sector. There is a deliberate attempt to encapsulate all the tenets of sustainability in the discourse that is social, economic and environmental aspects, giving them all equal importance. While this may create a larger and more enigmatic concept it is worth noting that: in developing countries, the average standard of living is much lower than in developed nations and in many instances, the challenge is to meet basic human needs. The emphasis here should therefore be on development (and assessment tools) that aim to address these basic needs while avoiding negative environmental impacts (Gibberd, 2002). The ELITH project therefore envisions itself as a prelude in the development typology suggested by Gibberd’s narrative. Efforts in reducing embodied energy in construction have widespread implications; infrastructure (including housing) development is prerequisite for development – has to happen in a sustainable manner.

REFRENCES

ALWAN, Z., JONES, P. 2014. The importance of embodied energy in carbon footprint assessment. Structural Survey, Vol. 32 (1), 49 – 60

ALYAMI, S. H., REZGUI, Y. & KWAN, A. 2013. Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach. Renewable and Sustainable Energy Reviews, 27, 43-54.

GIBBERD, J. 2002. The sustainable building assessment tool: assessing how buildings can support sustainability in developing countries. Built Environment Professions Convention. Johannesburg, South Africa: Document Transformation Technologies.

Embodied energy and embodied carbon – the tip of the iceberg

The ELITH project stepped away from the desk and ventured into the “real” world – as many research projects do, to gather data on housing types, popular building materials, and construction techniques.

As part of a pilot study; analysis of a 50sq.m four roomed house – determined as the predominant housing typology in the peri-urban and rural setting of Nkozi Sub County, Mpigi District – revealed walling, floor finishes and roofing as major energy consumers. Walling (burnt clay brick with cement sand mortar joints and in some cases plaster as render) had 45,569 MJ; floor finishes (ceramic tiles on cement screed) had 13,843 MJ and roofing (Steel sheet on timber supports) had 10,685 MJ. Walling emerges as an outstanding energy hot spot due to its extensive area and is therefore the most logical area to begin our investigations geared towards reducing the embodied energy of low-income housing.

It was determined that burnt clay brick is a common building material that is considered readily available, durable and relatively cheap. A review of the brick production process reveals that the traditional method for burning bricks in Uganda consists of stacking a large amount of dried bricks (up to 20,000) into a large pile with a tunnel opening at the bottom into which large quantities of firewood are introduced and burnt over a period of 24-hours. The pile is plastered with mud in order to reduce heat leakage. The described process results in unevenly baked bricks and 20% waste as the bricks closest to the heat source are over burned while those farther away are under-fired (Perez-pena, 2009.) Further more, locally produced burnt clay brick is often uneven, leading to thick mortar joints during construction and often, plastering of walls to achieve a finished look. These defects lead to an increased amount of cement use in mortar and plaster that contributes to increased embodied energy of walling, recall 45,569 MJ.

However, what is 45,569 MJ as identified for walling in real or relative terms?  How is this energy obtained, what are the impacts? Burning wood fuels brick production in Uganda, immediately raising concerns on the amount of carbon dioxide produced – this is the gas often cited in global warming and sustainability literature.  However, it must be noted that wood fuel is considered carbon neutral due to the carbon sequestered during tree growth. There are other impacts: deforestation and associated out-turns – to produce the 45,569 MJ, it is estimated that the equivalent of 4 fully grown mango trees were cut down; burning wood produces many gases that include nitrogen monoxide – although in small amounts, the gas is 300 times more potent as a green house gas than carbon dioxide, methane – 21 times more potent, and carbon monoxide; and, the respiratory health impacts levied on society due to smoke production.

In sight of these challenges, we question now, do we have a better alternative, how can we improve existing technologies, and what is the rate of uptake of new technology?  Well, there is a lot that could be fronted as possible alternatives, for now a list would include: improving aspects of traditional brick, and brick making technology to produce a higher quality brick with lower embodied energy; research on alternative masonry construction techniques that include: rammed earth, stabilised soil block technology; additives for improved longevity of wattle and daub; and the most suitable way of propagating these technologies.

Reference

PEREZ-PENA, A. 2009. Interlocking Stabilised Soil Blocks; Appropriate earth Technologies in Uganda, UN-HABITAT.

So, we set forth again to find out more; join us as we develop a guide on weighted alternatives that will protect our environment, earn you a saving and improve health and well-being in our built environments